๋ณธ๋ฌธ ๋ฐ”๋กœ๊ฐ€๊ธฐ

๐Ÿ‘ฉ‍๐ŸŽ“๐’๐“๐”๐ƒ๐˜/Fintech & Blockchain

Practical Lecture 6: Deep Learning

๋ฐ˜์‘ํ˜•

1. Deep learning simplification

๋”ฅ๋Ÿฌ๋‹์€ ์ธ๊ณต์ง€๋Šฅ(AI)์˜ ํ•œ ๋ถ„์•ผ๋กœ, ์ธ๊ณต์‹ ๊ฒฝ๋ง์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฐ์ดํ„ฐ์—์„œ ํŒจํ„ด์„ ํ•™์Šตํ•˜๋Š” ๋ฐฉ๋ฒ•์ž…๋‹ˆ๋‹ค. ๋”ฅ๋Ÿฌ๋‹์€ ๋งŽ์€ ์ž…๋ ฅ์ธต๊ณผ ์ถœ๋ ฅ์ธต, ๊ทธ๋ฆฌ๊ณ  ๊ทธ ์‚ฌ์ด์— ์—ฌ๋Ÿฌ ๊ฐœ์˜ ์ˆจ๊ฒจ์ง„ ์ธต(hidden layers)์œผ๋กœ ๊ตฌ์„ฑ๋ฉ๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋ณต์žกํ•œ ๋ฐ์ดํ„ฐ ํŒจํ„ด์„ ์ธ์‹ํ•˜๊ณ  ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

 

Deep learning is a branch of artificial intelligence (AI) that uses artificial neural networks to learn patterns from data. Deep learning consists of many input layers, output layers, and several hidden layers in between. This structure enables the recognition and prediction of complex data patterns.

 

 

(Deep Learning Example: Sushi Dish Selection)

์Šค์‹œ ์š”๋ฆฌ ์„ ํƒ ์˜ˆ์‹œ๋Š” ๋”ฅ๋Ÿฌ๋‹์ด ์–ด๋–ป๊ฒŒ ์ž‘๋™ํ•˜๋Š”์ง€๋ฅผ ๊ฐ„๋‹จํ•œ ์‚ฌ๋ก€๋กœ ์„ค๋ช…ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์•„๋ž˜๋Š” ๊ฐ•์˜ ์ž๋ฃŒ์— ํฌํ•จ๋œ ๊ทธ๋ฆผ๊ณผ ํ•จ๊ป˜ ์Šค์‹œ ์˜ˆ์‹œ๋ฅผ ๋” ์ž์„ธํžˆ ์„ค๋ช…ํ•œ ๋‚ด์šฉ์ž…๋‹ˆ๋‹ค.

1. ์ž…๋ ฅ ๋ฐ์ดํ„ฐ์™€ ์ธ๊ณต์‹ ๊ฒฝ๋ง (Inputs and Artificial Neural Network)

๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์€ ์—ฌ๋Ÿฌ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๋ฅผ ๋ฐ›์•„๋“ค์ด๊ณ , ์ด๋ฅผ ํ†ตํ•ด ๊ฒฐ๊ณผ๋ฅผ ์˜ˆ์ธกํ•ฉ๋‹ˆ๋‹ค. ์Šค์‹œ ์˜ˆ์‹œ์—์„œ๋Š” ๊ฒŒ(crab), ์˜ค์ด(cucumber), ๋งˆ์š”๋„ค์ฆˆ(mayonnaise), ๊ฟ€(honey), ๋‹ฌ๊ฑ€ ๊ป์งˆ(eggshells), ์ง„ํ™(mud) ๋“ฑ์˜ ์žฌ๋ฃŒ๊ฐ€ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๋กœ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค. ์ธ๊ณต์‹ ๊ฒฝ๋ง(Artificial Neural Network)์€ ์ด ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๋ฅผ ์ฒ˜๋ฆฌํ•˜์—ฌ ์Šค์‹œ ์š”๋ฆฌ์˜ ๋ง›(๋ง›์žˆ์Œ/๋ง›์—†์Œ)์„ ํ‰๊ฐ€ํ•ฉ๋‹ˆ๋‹ค.

 

 A deep learning model takes multiple input data and predicts the outcome. In the sushi example, ingredients such as crab, cucumber, mayonnaise, honey, eggshells, and mud are used as input data. The artificial neural network processes this input data to evaluate the taste of the sushi dish (delicious/not delicious).

2. ๊ฐ€์ค‘์น˜์™€ ์ถœ๋ ฅ (Weights and Output)

๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์€ ๊ฐ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ์— ๊ฐ€์ค‘์น˜๋ฅผ ํ• ๋‹นํ•ฉ๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ๊ฒŒ์™€ ์˜ค์ด ๊ฐ™์€ ์žฌ๋ฃŒ๋Š” ๊ธ์ •์ ์ธ ๊ฐ€์ค‘์น˜๋ฅผ ๊ฐ€์ง€์ง€๋งŒ, ๋‹ฌ๊ฑ€ ๊ป์งˆ๊ณผ ์ง„ํ™์€ ๋ถ€์ •์ ์ธ ๊ฐ€์ค‘์น˜๋ฅผ ๊ฐ€์งˆ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋ชจ๋ธ์€ ์ด ๊ฐ€์ค‘์น˜๋“ค์„ ํ•ฉ์‚ฐํ•˜์—ฌ ์ถœ๋ ฅ ๊ฒฐ๊ณผ๋ฅผ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค. ์ถœ๋ ฅ ๊ฒฐ๊ณผ๋Š” ์Šค์‹œ ์š”๋ฆฌ๊ฐ€ "๋ง›์žˆ๋‹ค" ๋˜๋Š” "๋ง›์—†๋‹ค"๋กœ ํ‰๊ฐ€๋ฉ๋‹ˆ๋‹ค.

 

The deep learning model assigns weights to each input data. For example, ingredients like crab and cucumber might have positive weights, while eggshells and mud might have negative weights. The model sums these weights to produce the output result. The output is an evaluation of whether the sushi dish is "delicious" or "not delicious."

3. ๊ฐ€์ค‘์น˜ ์กฐ์ • ๋ฐ ํ•™์Šต (Adjusting Weights and Learning)

๋ชจ๋ธ์ด ์ดˆ๊ธฐ์—๋Š” ๋ฌด์ž‘์œ„ ๊ฐ€์ค‘์น˜๋ฅผ ์‚ฌ์šฉํ•˜์ง€๋งŒ, ํ•™์Šต์„ ํ†ตํ•ด ์ด ๊ฐ€์ค‘์น˜๋ฅผ ์กฐ์ •ํ•ฉ๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ๊ฒŒ์™€ ์˜ค์ด์˜ ๊ฐ€์ค‘์น˜๋Š” ๋†’๊ฒŒ, ๋‹ฌ๊ฑ€ ๊ป์งˆ๊ณผ ์ง„ํ™์˜ ๊ฐ€์ค‘์น˜๋Š” ๋‚ฎ๊ฒŒ ์กฐ์ •๋ฉ๋‹ˆ๋‹ค. ๋ชจ๋ธ์€ ์—ฌ๋Ÿฌ ๋ฒˆ์˜ ๋ฐ˜๋ณต ํ•™์Šต์„ ํ†ตํ•ด ์ ์  ๋” ์ •ํ™•ํ•œ ์˜ˆ์ธก์„ ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.

 

Initially, the model uses random weights, but through learning, it adjusts these weights. For example, the weights for crab and cucumber might be increased, while the weights for eggshells and mud might be decreased. Through multiple iterations of learning, the model becomes capable of making more accurate predictions.

 

์Šค์‹œ ์˜ˆ์‹œ์˜ ๋‹จ๊ณ„๋ณ„ ์„ค๋ช… (Step-by-Step Explanation of the Sushi Example)

  1. ์ž…๋ ฅ ๋ฐ์ดํ„ฐ (Inputs):
    • ๊ฒŒ, ์˜ค์ด, ๋งˆ์š”๋„ค์ฆˆ, ๊ฟ€, ๋‹ฌ๊ฑ€ ๊ป์งˆ, ์ง„ํ™
  2. ์ธ๊ณต์‹ ๊ฒฝ๋ง (Artificial Neural Network):
    • ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๋ฅผ ๋ฐ›์•„๋“ค์ด๊ณ , ๊ฐ ๋ฐ์ดํ„ฐ์— ๊ฐ€์ค‘์น˜๋ฅผ ํ• ๋‹นํ•ฉ๋‹ˆ๋‹ค.
  3. ์ถœ๋ ฅ (Output):
    • ๊ฐ€์ค‘์น˜๋ฅผ ํ•ฉ์‚ฐํ•˜์—ฌ ์Šค์‹œ ์š”๋ฆฌ๊ฐ€ ๋ง›์žˆ๋Š”์ง€ ๋ง›์—†๋Š”์ง€ ํ‰๊ฐ€ํ•ฉ๋‹ˆ๋‹ค.
  4. ๊ฐ€์ค‘์น˜ ์˜ˆ์‹œ (Example Weights):
    • ๊ฒŒ: +1
    • ์˜ค์ด: +1
    • ๋‹ฌ๊ฑ€ ๊ป์งˆ: -10
    • ์ง„ํ™: -10
    • ๋งˆ์š”๋„ค์ฆˆ: +0
    • ๊ฟ€: +0
  5. ๊ฐ€์ค‘์น˜ ํ•ฉ์‚ฐ (Summing Weights):
    • ๊ฒŒ์™€ ์˜ค์ด๋งŒ ์žˆ๋Š” ์Šค์‹œ ๋กค: +1 + +1 = +2 (๋ง›์žˆ์Œ)
    • ๋‹ฌ๊ฑ€ ๊ป์งˆ๊ณผ ์ง„ํ™์ด ํฌํ•จ๋œ ์Šค์‹œ ๋กค: -10 + -10 = -20 (๋ง›์—†์Œ)
  6. ํ•™์Šต ๊ณผ์ • (Learning Process):
    • ๋ชจ๋ธ์€ ์—ฌ๋Ÿฌ ๋ฒˆ์˜ ๋ฐ˜๋ณต ํ•™์Šต์„ ํ†ตํ•ด ๊ฐ€์ค‘์น˜๋ฅผ ์กฐ์ •ํ•˜๊ณ , ์ ์  ๋” ์ •ํ™•ํ•œ ์˜ˆ์ธก์„ ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.

์š”์•ฝ (Summary)

์Šค์‹œ ์š”๋ฆฌ ์„ ํƒ ์˜ˆ์‹œ๋Š” ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์ด ์–ด๋–ป๊ฒŒ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๋ฅผ ์ฒ˜๋ฆฌํ•˜๊ณ , ๊ฐ€์ค‘์น˜๋ฅผ ํ†ตํ•ด ๊ฒฐ๊ณผ๋ฅผ ์˜ˆ์ธกํ•˜๋Š”์ง€๋ฅผ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ๋ชจ๋ธ์€ ํ•™์Šต์„ ํ†ตํ•ด ๊ฐ€์ค‘์น˜๋ฅผ ์กฐ์ •ํ•˜๊ณ , ๋ฐ˜๋ณต ํ•™์Šต์„ ํ†ตํ•ด ์ ์  ๋” ์ •ํ™•ํ•œ ์˜ˆ์ธก์„ ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋ฉ๋‹ˆ๋‹ค. ์ด ์˜ˆ์‹œ๋Š” ๋”ฅ๋Ÿฌ๋‹์˜ ๊ธฐ๋ณธ ์›๋ฆฌ๋ฅผ ์‰ฝ๊ฒŒ ์ดํ•ดํ•˜๋Š” ๋ฐ ๋„์›€์ด ๋ฉ๋‹ˆ๋‹ค.


2. Feature extraction

ํŠน์ง• ์ถ”์ถœ์€ ๋ฐ์ดํ„ฐ์—์„œ ์ค‘์š”ํ•œ ์ •๋ณด๋ฅผ ์ž๋™์œผ๋กœ ์ถ”์ถœํ•˜๋Š” ๊ณผ์ •์ž…๋‹ˆ๋‹ค. ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์€ ๋‹ค์–‘ํ•œ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๋ฅผ ๋ฐ›์•„๋“ค์ด๊ณ , ๊ฐ ๋ฐ์ดํ„ฐ์˜ ํŠน์ง•์„ ์ถ”์ถœํ•˜์—ฌ ๋” ๋†’์€ ์ˆ˜์ค€์˜ ์˜๋ฏธ๋ฅผ ํŒŒ์•…ํ•ฉ๋‹ˆ๋‹ค.

 

Feature extraction is the process of automatically extracting important information from data. Deep learning models take various input data and extract features from each data point to understand higher-level meanings.

 

1. ํŠน์ง• ์ถ”์ถœ์˜ ์ค‘์š”์„ฑ (Importance of Feature Extraction)

ํŠน์ง• ์ถ”์ถœ์€ ๋”ฅ๋Ÿฌ๋‹์—์„œ ์ค‘์š”ํ•œ ๊ณผ์ •์œผ๋กœ, ์›๋ณธ ๋ฐ์ดํ„ฐ์—์„œ ์ค‘์š”ํ•œ ์ •๋ณด๋ฅผ ์ž๋™์œผ๋กœ ์‹๋ณ„ํ•˜๊ณ  ์ถ”์ถœํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋ชจ๋ธ์ด ๋” ๋‚˜์€ ์˜ˆ์ธก๊ณผ ๋ถ„๋ฅ˜๋ฅผ ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ํŠน์ง• ์ถ”์ถœ์€ ์ด๋ฏธ์ง€, ํ…์ŠคํŠธ, ์Œ์„ฑ ๋“ฑ ๋‹ค์–‘ํ•œ ๋ฐ์ดํ„ฐ ์œ ํ˜•์— ์ ์šฉ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

2. ํŠน์ง• ์ถ”์ถœ์˜ ์˜ˆ์‹œ (Examples of Feature Extraction)

์˜ˆ๋ฅผ ๋“ค์–ด, ์ด๋ฏธ์ง€ ์ฒ˜๋ฆฌ์—์„œ ํŠน์ง• ์ถ”์ถœ์€ ์—ฃ์ง€(๊ฒฝ๊ณ„์„ ), ๋ชจ์„œ๋ฆฌ, ์งˆ๊ฐ ๋“ฑ์˜ ์ค‘์š”ํ•œ ์‹œ๊ฐ์  ์ •๋ณด๋ฅผ ์‹๋ณ„ํ•ฉ๋‹ˆ๋‹ค. ํ…์ŠคํŠธ ์ฒ˜๋ฆฌ์—์„œ๋Š” ๋‹จ์–ด ๋นˆ๋„, ๊ตฌ๋ฌธ ๊ตฌ์กฐ, ๊ฐ์ • ๋“ฑ์„ ์ถ”์ถœํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์Œ์„ฑ ์ธ์‹์—์„œ๋Š” ์Œ์กฐ, ์ฃผํŒŒ์ˆ˜, ์Œ์„ฑ ํŒจํ„ด ๋“ฑ์ด ์ฃผ์š” ํŠน์ง•์œผ๋กœ ์ถ”์ถœ๋ฉ๋‹ˆ๋‹ค.

3. ํŠน์ง• ์ถ”์ถœ์˜ ๋‹จ๊ณ„ (Steps in Feature Extraction)

ํŠน์ง• ์ถ”์ถœ ๊ณผ์ •์€ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๋‹จ๊ณ„๋กœ ์ด๋ฃจ์–ด์ง‘๋‹ˆ๋‹ค:

  1. ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ (Data Collection):
    • ๋‹ค์–‘ํ•œ ์†Œ์Šค์—์„œ ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ํ•ฉ๋‹ˆ๋‹ค.
    • ์˜ˆ: ์ด๋ฏธ์ง€, ํ…์ŠคํŠธ, ์Œ์„ฑ ๋ฐ์ดํ„ฐ
  2. ์ „์ฒ˜๋ฆฌ (Data Preprocessing):
    • ๋ฐ์ดํ„ฐ์˜ ๋…ธ์ด์ฆˆ๋ฅผ ์ œ๊ฑฐํ•˜๊ณ , ํ•„์š”ํ•œ ํ˜•์‹์œผ๋กœ ๋ณ€ํ™˜ํ•ฉ๋‹ˆ๋‹ค.
    • ์˜ˆ: ์ด๋ฏธ์ง€์˜ ํฌ๊ธฐ ์กฐ์ •, ํ…์ŠคํŠธ์˜ ์ •๊ทœํ™”, ์Œ์„ฑ ์‹ ํ˜ธ์˜ ํ•„ํ„ฐ๋ง
  3. ํŠน์ง• ์ถ”์ถœ (Feature Extraction):
    • ๋ฐ์ดํ„ฐ์—์„œ ์ค‘์š”ํ•œ ํŠน์ง•์„ ์‹๋ณ„ํ•˜๊ณ  ์ถ”์ถœํ•ฉ๋‹ˆ๋‹ค.
    • ์˜ˆ: ์ด๋ฏธ์ง€์˜ ์—ฃ์ง€ ์ถ”์ถœ, ํ…์ŠคํŠธ์˜ ํ‚ค์›Œ๋“œ ์ถ”์ถœ, ์Œ์„ฑ์˜ ์ฃผํŒŒ์ˆ˜ ๋ถ„์„
  4. ํŠน์ง• ์„ ํƒ (Feature Selection):
    • ์ถ”์ถœ๋œ ํŠน์ง• ์ค‘ ๊ฐ€์žฅ ์ค‘์š”ํ•œ ํŠน์ง•์„ ์„ ํƒํ•ฉ๋‹ˆ๋‹ค.
    • ์˜ˆ: ๋ถ„๋ฅ˜ ์ž‘์—…์— ๊ฐ€์žฅ ๋„์›€์ด ๋˜๋Š” ํŠน์ง• ์„ ํƒ
  5. ํŠน์ง• ๋ณ€ํ™˜ (Feature Transformation):
    • ์„ ํƒ๋œ ํŠน์ง•์„ ๋ชจ๋ธ์— ์ ํ•ฉํ•œ ํ˜•์‹์œผ๋กœ ๋ณ€ํ™˜ํ•ฉ๋‹ˆ๋‹ค.
    • ์˜ˆ: ํŠน์ง• ๋ฒกํ„ฐ๋กœ ๋ณ€ํ™˜ํ•˜์—ฌ ๋ชจ๋ธ ์ž…๋ ฅ์œผ๋กœ ์‚ฌ์šฉ

4. ํŠน์ง• ์ถ”์ถœ์˜ ์‹ค์Šต ์˜ˆ์‹œ (Practical Example of Feature Extraction)

ํŠน์ง• ์ถ”์ถœ์˜ ์‹ค์Šต ์˜ˆ์‹œ๋Š” ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜ ์ž‘์—…์—์„œ ๋ณผ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ๊ณ ์–‘์ด์™€ ๊ฐœ๋ฅผ ๊ตฌ๋ถ„ํ•˜๋Š” ๋ชจ๋ธ์„ ๋งŒ๋“ค ๋•Œ, ์ด๋ฏธ์ง€์—์„œ ๊ณ ์–‘์ด์™€ ๊ฐœ์˜ ํŠน์ • ์‹œ๊ฐ์  ํŠน์ง•(์˜ˆ: ๊ท€ ๋ชจ์–‘, ํ„ธ ํŒจํ„ด)์„ ์ถ”์ถœํ•˜์—ฌ ๋ชจ๋ธ์ด ์ด๋ฅผ ํ•™์Šตํ•˜๊ณ  ๋ถ„๋ฅ˜ํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•ฉ๋‹ˆ๋‹ค.

์˜ˆ์‹œ ๊ณผ์ •:

  1. ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘: ๊ณ ์–‘์ด์™€ ๊ฐœ์˜ ์ด๋ฏธ์ง€๋ฅผ ์ˆ˜์ง‘ํ•ฉ๋‹ˆ๋‹ค.
  2. ์ „์ฒ˜๋ฆฌ: ์ด๋ฏธ์ง€๋ฅผ ๋™์ผํ•œ ํฌ๊ธฐ๋กœ ์กฐ์ •ํ•˜๊ณ , ์ƒ‰์ƒ ๋ณด์ •์„ ํ•ฉ๋‹ˆ๋‹ค.
  3. ํŠน์ง• ์ถ”์ถœ: ์—ฃ์ง€ ๊ฐ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•˜์—ฌ ๊ณ ์–‘์ด์™€ ๊ฐœ์˜ ํŠน์ง•์ ์ธ ์‹œ๊ฐ์  ์š”์†Œ๋ฅผ ์ถ”์ถœํ•ฉ๋‹ˆ๋‹ค.
  4. ํŠน์ง• ์„ ํƒ: ๋ชจ๋ธ ํ•™์Šต์— ๊ฐ€์žฅ ๋„์›€์ด ๋˜๋Š” ํŠน์ง•(์˜ˆ: ๊ท€ ๋ชจ์–‘, ํ„ธ ํŒจํ„ด)์„ ์„ ํƒํ•ฉ๋‹ˆ๋‹ค.
  5. ํŠน์ง• ๋ณ€ํ™˜: ์„ ํƒ๋œ ํŠน์ง•์„ ๋ฒกํ„ฐ ํ˜•ํƒœ๋กœ ๋ณ€ํ™˜ํ•˜์—ฌ ๋ชจ๋ธ์— ์ž…๋ ฅํ•ฉ๋‹ˆ๋‹ค.

5. ํŠน์ง• ์ถ”์ถœ์˜ ์žฅ์  (Advantages of Feature Extraction)

ํŠน์ง• ์ถ”์ถœ์˜ ์ฃผ์š” ์žฅ์ ์€ ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค:

  • ํšจ์œจ์„ฑ ํ–ฅ์ƒ: ๋ชจ๋ธ์ด ์ฒ˜๋ฆฌํ•ด์•ผ ํ•  ๋ฐ์ดํ„ฐ์˜ ์–‘์„ ์ค„์—ฌ ํ•™์Šต ์†๋„๋ฅผ ํ–ฅ์ƒ์‹œํ‚ต๋‹ˆ๋‹ค.
  • ์˜ˆ์ธก ์ •ํ™•๋„ ํ–ฅ์ƒ: ์ค‘์š”ํ•œ ์ •๋ณด๋งŒ์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ชจ๋ธ์˜ ์˜ˆ์ธก ์ •ํ™•๋„๋ฅผ ๋†’์ž…๋‹ˆ๋‹ค.
  • ๋…ธ์ด์ฆˆ ๊ฐ์†Œ: ๋ถˆํ•„์š”ํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ์ œ๊ฑฐํ•˜์—ฌ ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ต๋‹ˆ๋‹ค.

6. ๋”ฅ๋Ÿฌ๋‹์—์„œ ํŠน์ง• ์ถ”์ถœ์˜ ์—ญํ•  (Role of Feature Extraction in Deep Learning)

๋”ฅ๋Ÿฌ๋‹์—์„œ๋Š” ํŠน์ง• ์ถ”์ถœ์ด ์ž๋™ํ™”๋˜์–ด ์žˆ์œผ๋ฉฐ, ์ธ๊ณต์‹ ๊ฒฝ๋ง์˜ ์—ฌ๋Ÿฌ ์ธต์„ ํ†ตํ•ด ์ด๋ฃจ์–ด์ง‘๋‹ˆ๋‹ค. ๊ฐ ์ธต์€ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ์˜ ๋” ๋†’์€ ์ˆ˜์ค€์˜ ์ถ”์ƒํ™”๋ฅผ ์ˆ˜ํ–‰ํ•˜์—ฌ, ์ตœ์ข…์ ์œผ๋กœ ์˜๋ฏธ ์žˆ๋Š” ํŠน์ง•์„ ์ถ”์ถœํ•ฉ๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ์ดˆ๊ธฐ ์ธต์€ ๊ธฐ๋ณธ์ ์ธ ํŒจํ„ด์„ ํ•™์Šตํ•˜๊ณ , ๋” ๋†’์€ ์ธต์€ ๋ณต์žกํ•œ ํ˜•ํƒœ๋‚˜ ๊ฐ์ฒด๋ฅผ ์ธ์‹ํ•ฉ๋‹ˆ๋‹ค.

 


3. Applications

๋”ฅ๋Ÿฌ๋‹์€ ๊ธˆ์œต ์ž๋ฌธ, ํŽ€๋“œ ๊ด€๋ฆฌ, ์ด๋ฏธ์ง€ ์ธ์‹, ์Œ์„ฑ ์ธ์‹ ๋“ฑ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ์‘์šฉ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ๊ธˆ์œต ์ž๋ฌธ์—์„œ๋Š” ๋”ฅ๋Ÿฌ๋‹์„ ์‚ฌ์šฉํ•˜์—ฌ ์ง€์ถœ ํŒจํ„ด์„ ๋ถ„์„ํ•˜๊ณ , ๋ถˆํ•„์š”ํ•œ ์ง€์ถœ์„ ์‹๋ณ„ํ•˜์—ฌ ์ €์ถ•์„ ๊ทน๋Œ€ํ™”ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

 

Deep learning can be applied in various fields such as financial advice, fund management, image recognition, and speech recognition. For example, in financial advice, deep learning can analyze spending patterns to identify unnecessary expenses and maximize savings.

 

 

๋”ฅ๋Ÿฌ๋‹์˜ ์‘์šฉ (Applications of Deep Learning)

1. ๊ธˆ์œต ์ž๋ฌธ ๊ฐœ์„  (Improving Financial Advice)

๋”ฅ๋Ÿฌ๋‹์€ ๊ธˆ์œต ์ž๋ฌธ์„ ๊ฐœ์„ ํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ๋กœ๋ณด ์–ด๋“œ๋ฐ”์ด์Šค(Robo-advice) ๋ถ„์•ผ์—์„œ ๋”ฅ๋Ÿฌ๋‹์„ ์‚ฌ์šฉํ•˜๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๋ชฉํ‘œ๋ฅผ ๋‹ฌ์„ฑํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค:

  • ์ €์ถ• ๊ทน๋Œ€ํ™”:
    • ์ง€์ถœ ํŒจํ„ด ๋ถ„์„: ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์ด ์‚ฌ์šฉ์ž์˜ ์ง€์ถœ ํŒจํ„ด์„ ๋ถ„์„ํ•˜์—ฌ ๋ถˆํ•„์š”ํ•œ ์ง€์ถœ์„ ์‹๋ณ„ํ•ฉ๋‹ˆ๋‹ค.
    • ๋ถˆํ•„์š”ํ•œ ์ง€์ถœ ๊ฐ์ง€: ๋ถˆํ•„์š”ํ•œ ์ง€์ถœ์„ ์ค„์ด๊ธฐ ์œ„ํ•ด ์‚ฌ์šฉ์ž๊ฐ€ ์ ˆ์•ฝํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค.
  • ์œ„ํ—˜ ํšŒํ”ผ ์‹๋ณ„:
    • ์žฌ์‚ฐ, ์†Œ๋“, ์ง€์ถœ ๋ถ„์„: ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์ด ์‚ฌ์šฉ์ž์˜ ์žฌ์‚ฐ, ์†Œ๋“, ์ง€์ถœ ํŒจํ„ด์„ ๋ถ„์„ํ•˜์—ฌ ์œ„ํ—˜ ํšŒํ”ผ ์„ฑํ–ฅ์„ ์‹๋ณ„ํ•ฉ๋‹ˆ๋‹ค.
    • ๊ฐœ์ธ ๋ฐฐ๊ฒฝ ๋ฐ ์‚ฌํšŒ์  ์—ฐ๊ฒฐ ๋ถ„์„: ๊ฐœ์ธ์˜ ๋ฐฐ๊ฒฝ, ์‚ฌํšŒ์  ์—ฐ๊ฒฐ, ์ทจ๋ฏธ ๋“ฑ์„ ๋ถ„์„ํ•˜์—ฌ ๋” ๋‚˜์€ ๊ธˆ์œต ์ž๋ฌธ์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค.

2. ํŽ€๋“œ ๊ด€๋ฆฌ ๊ฐœ์„  (Improving Fund Management)

๋”ฅ๋Ÿฌ๋‹์€ ํŽ€๋“œ ๊ด€๋ฆฌ์—๋„ ํฐ ๋„์›€์ด ๋ฉ๋‹ˆ๋‹ค. ํŽ€๋“œ ๊ด€๋ฆฌ์—์„œ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๋ชฉํ‘œ๋ฅผ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•ด ๋”ฅ๋Ÿฌ๋‹์„ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค:

  • ์ฃผ์‹ ๊ฐ€๊ฒฉ ์˜ˆ์ธก:
    • ๊ฑฐ์‹œ๊ฒฝ์ œ, ์†Œ๋น„ ํŒจํ„ด, ์ฃผ์‹ ๊ธฐ๋ณธ ์‚ฌํ•ญ ๋ถ„์„: ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์ด ๊ฑฐ์‹œ๊ฒฝ์ œ ๋ฐ์ดํ„ฐ, ์†Œ๋น„ ํŒจํ„ด, ์ฃผ์‹์˜ ๊ธฐ๋ณธ ์‚ฌํ•ญ(๊ธฐ์ˆ ์  ์ง€ํ‘œ ๋“ฑ)์„ ๋ถ„์„ํ•˜์—ฌ ์ฃผ์‹ ๊ฐ€๊ฒฉ ๋ณ€๋™์„ ์˜ˆ์ธกํ•ฉ๋‹ˆ๋‹ค.
    • ์˜ˆ์ธก ์ •ํ™•๋„ ํ–ฅ์ƒ: ์ด๋Ÿฌํ•œ ์˜ˆ์ธก์„ ํ†ตํ•ด ํˆฌ์ž ๊ฒฐ์ •์„ ๋” ์ •ํ™•ํ•˜๊ฒŒ ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

3. ๋Œ€์ฒด ์˜ˆ์ธก์ž (Alternative Predictors)

๋”ฅ๋Ÿฌ๋‹์„ ํ†ตํ•ด ์ฃผ์‹ ์‹œ์žฅ๊ณผ ๊ฒฝ์ œ ๋™ํ–ฅ์„ ์˜ˆ์ธกํ•˜๋Š” ๋Œ€์ฒด ๋ฐฉ๋ฒ•๋“ค๋„ ์žˆ์Šต๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ์œ„์„ฑ ์ด๋ฏธ์ง€๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๊ฒฝ์ œ ํ™œ๋™์„ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋ถ„์„ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค:

  • ์œ„์„ฑ ์ด๋ฏธ์ง€ ๋ถ„์„:
    • ์œ ์กฐํƒฑํฌ ๋ถ„์„: ์œ ์กฐํƒฑํฌ์˜ ๋ณ€ํ™”๋ฅผ ๋ถ„์„ํ•˜์—ฌ ์„์œ  ๊ณต๊ธ‰๊ณผ ์ˆ˜์š”๋ฅผ ํŒŒ์•…ํ•ฉ๋‹ˆ๋‹ค.
    • ์ฃผ์ฐจ์žฅ ์ฐจ๋Ÿ‰ ๋ถ„์„: ์ฃผ์ฐจ์žฅ์˜ ์ฐจ๋Ÿ‰ ํšŒ์ „์œจ์„ ๋ถ„์„ํ•˜์—ฌ ์†Œ๋น„์ž ํ™œ๋™ ์ˆ˜์ค€์„ ์˜ˆ์ธกํ•ฉ๋‹ˆ๋‹ค.

์š”์•ฝ (Summary)

๋”ฅ๋Ÿฌ๋‹์€ ๊ธˆ์œต ์ž๋ฌธ๊ณผ ํŽ€๋“œ ๊ด€๋ฆฌ์—์„œ ๋งค์šฐ ์œ ์šฉํ•˜๊ฒŒ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์‚ฌ์šฉ์ž์˜ ์ง€์ถœ ํŒจํ„ด์„ ๋ถ„์„ํ•˜๊ณ , ์œ„ํ—˜ ํšŒํ”ผ ์„ฑํ–ฅ์„ ์‹๋ณ„ํ•˜๋ฉฐ, ์ฃผ์‹ ๊ฐ€๊ฒฉ์„ ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋˜ํ•œ, ์œ„์„ฑ ์ด๋ฏธ์ง€์™€ ๊ฐ™์€ ๋Œ€์ฒด ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๊ฒฝ์ œ ํ™œ๋™์„ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋ถ„์„ํ•  ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ๋ชจ๋“  ์‘์šฉ์€ ๋”ฅ๋Ÿฌ๋‹์˜ ๊ฐ•๋ ฅํ•œ ๋ฐ์ดํ„ฐ ๋ถ„์„ ๋ฐ ์˜ˆ์ธก ๋Šฅ๋ ฅ์„ ํ†ตํ•ด ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค.


Guest Speaker [Open Banking Regulation]


1. Open Banking Regulation
- What is it?
- What does it aim to do? 

Open banking is the system of allowing consensual access and control of a customers bank account by regulated third-party applications. Open banking allows customers to control who their data is shared with and for what purpose

- ํ•„์š”ํ•œ ์ด์œ ?
์ „ํ†ต์ ์ธ ์€ํ–‰ ์—…๋ฌด์—์„œ ๊ธˆ์œต ๋ฐ์ดํ„ฐ๋Š” ์ผ๋ฐ˜์ ์œผ๋กœ ๊ฐœ๋ณ„ ์€ํ–‰ ๋‚ด์— ์‚ฌ์ผ๋กœํ™”๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค. ๊ณ ๊ฐ์€ ์ž์‹ ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์ œ3์ž์™€ ๊ณต์œ ํ•  ์ˆ˜ ์žˆ๋Š” ์„ ํƒ๊ถŒ์ด ์ œํ•œ๋˜์–ด ์žˆ๊ณ , ๋ฐ์ดํ„ฐ ์ ‘๊ทผ์€ ์ข…์ข… ์€ํ–‰์˜ ํ์‡„์ ์ธ ์„œ๋น„์Šค ์ œ๊ณต์ž ์ƒํƒœ๊ณ„๋กœ ์ œํ•œ๋˜์–ด ์‚ฌ์šฉ ๊ฐ€๋Šฅํ•œ ์˜ต์…˜์˜ ๋‹ค์–‘์„ฑ์ด ์ œํ•œ๋˜๊ณ  ๊ฒฝ์Ÿ๊ณผ ํ˜์‹ ์„ ์–ต์ œํ•ฉ๋‹ˆ๋‹ค. ์˜คํ”ˆ ๋ฑ…ํ‚น์€ ๊ธˆ์œต ์„œ๋น„์Šค ์‚ฐ์—…(FSI) ๋‚ด์—์„œ ๋ฐ์ดํ„ฐ ๊ณต์œ , ๊ฒฝ์Ÿ ๋ฐ ๊ณ ๊ฐ ๊ถŒํ•œ ๋ถ€์—ฌ๋ฅผ ๊ฐ•์กฐํ•จ์œผ๋กœ์จ ์ „ํ†ต์ ์ธ ์€ํ–‰ ์—…๋ฌด๊ณผ ์ฐจ๋ณ„ํ™”๋ฉ๋‹ˆ๋‹ค.

 

์˜คํ”ˆ ๋ฑ…ํ‚น์€ ๋ณด์•ˆ API๋ฅผ ํ†ตํ•ด ๊ธˆ์œต ๊ธฐ๊ด€๊ณผ ์Šน์ธ๋œ ์ œ3์ž ๊ณต๊ธ‰์ž ๊ฐ„์˜ ์•ˆ์ „ํ•œ ๋ฐ์ดํ„ฐ ๊ณต์œ ๋ฅผ ์ง€์›ํ•˜๋Š” ์€ํ–‰ ์‹œ์Šคํ…œ์„ ์œ„ํ•œ ๊ธฐ์ˆ  ๊ธฐ๋ฐ˜ ํ”„๋ ˆ์ž„์›Œํฌ์ž…๋‹ˆ๋‹ค. ๊ฒฝ์Ÿ, ํ˜์‹ , ๊ธˆ์œต ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ๊ณ ๊ฐ ์ œ์–ด ํ™•๋Œ€๋ฅผ ์ด‰์ง„ํ•˜์—ฌ ์†Œ๋น„์ž๊ฐ€ ๊ฐ•๋ ฅํ•œ ๋ณด์•ˆ ์กฐ์น˜๋ฅผ ์œ ์ง€ํ•˜๋ฉด์„œ ๊ด‘๋ฒ”์œ„ํ•œ ๊ธˆ์œต ์„œ๋น„์Šค ๋ฐ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์— ์•ก์„ธ์Šคํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์˜คํ”ˆ ๋ฑ…ํ‚น์€ ํˆฌ๋ช…์„ฑ์„ ๊ฐœ์„ ํ•˜๊ณ , ๊ณ ๊ฐ ๊ฒฝํ—˜์„ ํ–ฅ์ƒํ•˜๋ฉฐ, ๋งž์ถคํ˜• ๊ธˆ์œต ์ƒํ’ˆ ๋ฐ ์„œ๋น„์Šค์˜ ๊ฐœ๋ฐœ์„ ์ถ”์ง„ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•ฉ๋‹ˆ๋‹ค.

 

 

 


2. BankiFi
- What do we do?
- How does it help banks?
- How does it help customers? 

Bankifi statement 
- A combination of regulation and advances in technology have lowered the barrier of entry enabling new entrants to erode Bank revenues. SMEs are the low hanging fruit for new entrants having been underserved by Banks. The next domains to be unbundled will be Business Checking, payables, receivables and lending. To remain relevant to SMEs, banks must move from being product centric to being customer centric by embedding banking in SME workflows. 

 

 




Instagram: subin_102426

๋ฐ˜์‘ํ˜•